Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013;19(34):6064-93.
doi: 10.2174/13816128113199990407.

Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence

Affiliations
Free PMC article
Review

Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence

Joao Tomé-Carneiro et al. Curr Pharm Des. .
Free PMC article

Abstract

Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a non-flavonoid polyphenol that may be present in a limited number of foodstuffs such as grapes and red wine. Resveratrol has been reported to exert a plethora of health benefits through many different mechanisms of action. This versatility and presence in the human diet have drawn the worldwide attention of many research groups over the past twenty years, which has resulted in a huge output of in vitro and animal (preclinical) studies. In line with this expectation, many resveratrol- based nutraceuticals are consumed all over the world with questionable clinical/scientific support. In fact, the confirmation of these benefits in humans through randomized clinical trials is still very limited. The vast majority of preclinical studies have been performed using assay conditions with a questionable extrapolation to humans, i.e. too high concentrations with potential safety concerns (adverse effects and drug interactions), short-term exposures, in vitro tests carried out with non-physiological metabolites and/or concentrations, etc. Unfortunately, all these hypothesis-generating studies have contributed to increased the number of 'potential' benefits and mechanisms of resveratrol but confirmation in humans is very limited. Therefore, there are many issues that should be addressed to avoid an apparent endless loop in resveratrol research. The so-called 'Resveratrol Paradox', i.e., low bioavailability but high bioactivity, is a conundrum not yet solved in which the final responsible actor (if any) for the exerted effects has not yet been unequivocally identified. It is becoming evident that resveratrol exerts cardioprotective benefits through the improvement of inflammatory markers, atherogenic profile, glucose metabolism and endothelial function. However, safety concerns remain unsolved regarding chronic consumption of high RES doses, specially in medicated people. This review will focus on the currently available evidence regarding resveratrol's effects on humans obtained from randomized clinical trials. In addition, we will provide a critical outlook for further research on this molecule that is evolving from a minor dietary compound to a possible multi-target therapeutic drug.

Figures

Fig. (1)
Number of publications that include the term ‘resveratrol’ as a function of year.
Fig. (2)
Preclinical effects for resveratrol. AMPK, adenosine monophosphate activated protein kinase; APAF, apoptotic protease activating factor; Apo, apolipoprotein; Bad, Bcl-2-associated death promoter; Bak, Bcl-2-antagonist killer; Bax, Bcl-2-associated X protein; Bcl-2, B-cell lymphoma 2; Bcl-xL, B-cell lymphoma-extra large; BFL-1/A1, Bcl-2-related protein A1; Bid, BH3 interacting-domain death agonist; BH4, tetrahydrobiopterin; Bim, Bcl-2-like 11 apoptosis facilitator; CAT, catalase; cdk, cyclin-dependent kinase; cIAPs, inhibitor of apoptosis proteins; COX, cyclooxigenase; CREB, cAMP response elementbinding; CRP, C-reactive protein; Cyt-c, cytochrome C; E2F, transcription factor E2F; EGFR, endothelial growth factor receptor; eNOS, endothelial nitric oxide synthase; ERK, extracellular signal regulated kinase; FFA, free fatty acids; FGF, fibroblast growth factor; FOXO, forkhead transcription factor; GCH1, GTP cyclohydrolase 1; GCLC, glutamate-cysteine ligase catalytic subunit; GPx, glutathione peroxidase; GRO-α/CXCL1, chemokine (C-X-C motif) ligand 1; GSH, glutathione; HDL-c, high density lipoprotein cholesterol; HMG-CoA, 3-hydroxy-3-methylglutaryl-coenzyme A; HO-1, heme oxygenase-1; HOMA-IR, homeostasis model of insulin resistance; ICAM-1, intercellular adhesion molecule 1; IFN-γ, interferon-gamma; IL, interleukin; iNOS, inducible nitric oxide synthase; JNK, c-Jun N-terminal kinase; LDL-c, low-density lipoprotein cholesterol; MAPKs, mitogen-activated protein kinases; MCP, monocyte chemotactic protein; MDA, malondialdehyde; MI, myocardial infarct; MIP, macrophage inflammatory protein; MMP, matrix metallopeptidase; MPO, myeloperoxidase; MTA, metastasis-associated protein; mTOR, mammalian target of rapamycin; NF-κB, nuclear factor kappa B; NO, nitric oxide; NOX, nicotinamide adenine dinucleotide phosphate oxidase; NQO, nicotinamide adenine dinucleotide phosphate: quinone oxidoreductase; Nrf, nuclear factor-E2-related factor; p21Waf1/Cip1, cyclin-dependent kinase inhibitor 1A; p27, cyclin dependant kinase inhibitor 27; p53, tumor protein 53; p70S6K, p70S6 kinase; PGC, peroxisome proliferatoractivated receptor-gamma coactivator; PKB, protein kinase B; PGE2, prostaglandin E2; PI3K, phosphoinositide 3-kinase; PKC, protein kinase C; PPAR, peroxisome proliferator-activated receptor; PTEN, phosphatase and tensin homolog; Rb, retinoblastoma tumor suppressor gene; ROS, reactive oxygen species; sCD40L, soluble CD40 ligand; SIRT1, sirtuin 1; SOD, superoxide dismutase; STAT, signal transducer and activator of transcription; TG, triglycerides; TGF, transforming growth factor; TH, tyrosine hydroxylase; TIMP, tissue inhibitors of MMP; TNFα, tumor necrosis factor alfa; Total-c, total cholesterol; TRAF, TNF receptor associated factor; TRAIL, TNF-related apoptosis inducing ligand; Trx, thioredoxin; VCAM-1, vascular cell adhesion protein 1; VEGF, vascular endothelial growth factor; XIAP, X-linked inhibitor of apoptosis protein; XO, xanthine oxidase. Effect is indicated by ↓ : reduction; ↑ : induction; p-: phosphorylate status.

Similar articles

See all similar articles

Cited by 100 articles

See all "Cited by" articles

References

    1. Tomás-Barberán FA, Espín JC. Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. J Sci Food Agric. 2001;81:853–76.
    1. Waterhouse AL. Wine phenolics. Ann N Y Acad Sci. 2002;957:21–36. - PubMed
    1. Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr. 2000;130:2073S–85S. - PubMed
    1. Williamson G, Manach C. Bioavailability and bioefficacy of polyphenols in humans.II Review of 93 intervention studies. Am J Clin Nutr. 2005;81:243S–255S. - PubMed
    1. Hooper L, Kay C, Abdelhamid A, Kroon PA, et al. Effects of chocolate cocoa and flavan-3-ols on cardiovascular health a systematic review and meta-analysis of randomized trials. Am J Clin Nutr. 2012;95:740–51. - PubMed

Publication types

MeSH terms

Feedback