Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Mar 10;9:10.
doi: 10.1186/1475-2891-9-10.

A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef

Affiliations
Free PMC article
Review

A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef

Cynthia A Daley et al. Nutr J. .
Free PMC article

Abstract

Growing consumer interest in grass-fed beef products has raised a number of questions with regard to the perceived differences in nutritional quality between grass-fed and grain-fed cattle. Research spanning three decades suggests that grass-based diets can significantly improve the fatty acid (FA) composition and antioxidant content of beef, albeit with variable impacts on overall palatability. Grass-based diets have been shown to enhance total conjugated linoleic acid (CLA) (C18:2) isomers, trans vaccenic acid (TVA) (C18:1 t11), a precursor to CLA, and omega-3 (n-3) FAs on a g/g fat basis. While the overall concentration of total SFAs is not different between feeding regimens, grass-finished beef tends toward a higher proportion of cholesterol neutral stearic FA (C18:0), and less cholesterol-elevating SFAs such as myristic (C14:0) and palmitic (C16:0) FAs. Several studies suggest that grass-based diets elevate precursors for Vitamin A and E, as well as cancer fighting antioxidants such as glutathione (GT) and superoxide dismutase (SOD) activity as compared to grain-fed contemporaries. Fat conscious consumers will also prefer the overall lower fat content of a grass-fed beef product. However, consumers should be aware that the differences in FA content will also give grass-fed beef a distinct grass flavor and unique cooking qualities that should be considered when making the transition from grain-fed beef. In addition, the fat from grass-finished beef may have a yellowish appearance from the elevated carotenoid content (precursor to Vitamin A). It is also noted that grain-fed beef consumers may achieve similar intakes of both n-3 and CLA through the consumption of higher fat grain-fed portions.

Figures

Figure 1
Linoleic (C18:2n-6) and α-Linolenic (C18:3n-3) Acid metabolism and elongation. (Adapted from Simopoulos et al., 1991)
Figure 2
De novo synthesis of CLA from 11t-C18:1 vaccenic acid. (Adapted from Bauman et al., 1999)

Similar articles

See all similar articles

Cited by 74 articles

See all "Cited by" articles

References

    1. Griel AE, Kris-Etherton PM. Beyond saturated fat: The importance of the dietary fatty acid profile on cardiovascular disease. Nutrition Reviews. 2006;64(5):257–62. doi: 10.1111/j.1753-4887.2006.tb00208.x. - DOI - PubMed
    1. Kris-Etherton PM, Innis S. Dietary Fatty Acids -- Position of the American Dietetic Association and Dietitians of Canada. American Dietetic Association Position Report. Journal of the American Dietetic Association. 2007;107(9):1599–1611. Ref Type: Report. - PubMed
    1. Hu FB, Stampfer MJ, Manson JE, Rimm E, Colditz GA, Rosner BA, Hennekins CH, Willett WC. Dietary fat intake and the risk of coronary heart disease in women. New England Journal of Medicine. 1997;337:1491–9. doi: 10.1056/NEJM199711203372102. - DOI - PubMed
    1. Posner BM, Cobb JL, Belanger AJ, Cupples LA, D'Agostino RB, Stokes J. Dietary lipid predictors of coronary heart disease in men. The Framingham Study. Archives of Internal Medicine. 1991;151:1181–7. doi: 10.1001/archinte.151.6.1181. - DOI - PubMed
    1. Mensink RP, Katan MB. Effect of dietary fatty acids on serum lipids and lipoproteins. Arteriosclerosis Thrombosis Vascular Biology. 1992;12:911–9. - PubMed
Feedback