Oligodendrocytes are a Novel Source of Amyloid Peptide Generation

Abstract

Alzheimer’s disease is characterised by regional neuronal degeneration, synaptic loss, and the progressive deposition of the 4 kDa β-amyloid peptide (Aβ) in senile plaques and accumulation of tau protein as neurofibrillary tangles. Aβ derives from the larger precursor molecule, amyloid precursor protein (APP) by proteolytic processing via β- and γ-secretases. While APP expression is well documented in neurons and astrocytes, the case for oligodendrocytes is less clear. The latter cell type is reported to express different isoforms of APP, and we have confirmed this observation by immunocytochemistry in cultures of differentiated rat cortical oligodendrocytes. Moreover, by means of a sensitive electrochemiluminescent immunoassay employing Aβ C-terminal specific antibodies, mature oligodendrocytes are shown to secrete the 40 and 42 amino acid Aβ species (Aβ40 and Aβ42). Secretion of Aβ peptides was reduced by incubating oligodendrocytes with α- and β-secretase inhibitors, or a γ-secretase inhibitor. Disturbances of APP processing and/or synthesis in oligodendrocytes may account for some myelin disorders observed in Alzheimer’s disease and other senile dementias.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Goedert M, Wischik CM, Crowther RA et al (1988) Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci USA 85:4051–4055

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Selkoe DJ (1994) Cell biology of the amyloid β-protein precursor and the mechanism of Alzheimer’s disease. Annu Rev Cell Biol 10:373–403

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Selkoe DJ (2003) Folding proteins in fatal ways. Nature 42:900–904

    Article  CAS  Google Scholar 

  6. 6.

    Walsh DM, Selkoe DJ (2004) Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44:181–193

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Walsh DM, Klyubin I, Fadeeva JV et al (2002) Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Meyer-Luehmann M, Spires-Jones TL, Prada C et al (2008) Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease. Nature 451:720–724

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Billings LM, Oddo S, Green KN et al (2005) Intraneuronal Aβ causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 45:675–688

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Goedert M (1987) Neuronal localization of amyloid beta protein precursor mRNA in normal human brain and in Alzheimer’s disease. EMBO J 6:3627–3632

    CAS  PubMed  Google Scholar 

  11. 11.

    Mita S, Schon EA, Herbert J (1989) Widespread expression of amyloid beta-protein precursor gene in rat brain. Am J Pathol 134:1253–1261

    CAS  PubMed  Google Scholar 

  12. 12.

    Selkoe DJ, Podlisny MB, Joachim CL et al (1988) β-Amyloid precursor protein of Alzheimer disease occurs as 110- to 135-kilodalton membrane-associated proteins in neural and nonneural tissues. Proc Natl Acad Sci USA 85:7341–7345

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Card JP, Meade RP, Davis LG (1988) Immunocytochemical localization of the precursor protein for β-amyloid in the rat central nervous system. Neuron 1:835–846

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Kawarabayashi T, Shoji M, Harigaya Y et al (1991) Amyloid β/A4 protein precursor is widely distributed in both the central and peripheral nervous systems of the mouse. Brain Res 552:1–7

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Beach TG, Walker R, McGeer EG (1989) Patterns of gliosis in Alzheimer’s disease and aging cerebrum. Glia 2:420–436

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Perlmutter LS, Barron E, Chui HC (1990) Morphologic association between microglia and senile plaque amyloid in Alzheimer’s disease. Neurosci Lett 119:32–36

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Yamaguchi H, Nakazato Y, Yamazaki T et al (1991) Subpial β/A4 amyloid deposition occurs between astroglial processes in Alzheimer-type dementia. Neurosci Lett 223:217–220

    Article  Google Scholar 

  18. 18.

    Berkenbosch F, Refolo LM, Fiedrich VL Jr et al (1990) The Alzheimer’s amyloid precursor protein is produced by Type I astrocytes in primary cultures of rat neuroglia. J Neurosci Res 25:431–440

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Haass C, Hung AY, Selkoe DJ (1991) Processing of β-amyloid precursor protein in microglia and astrocytes favors an internal localization over constitutive secretion. J Neurosci 11:3783–3793

    CAS  PubMed  Google Scholar 

  20. 20.

    Ohyagi Y, Tabira T (1993) Effect of growth factors and cytokines on expression of amyloid beta protein precursor mRNAs in cultured neural cells. Mol Brain Res 18:127–132

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Garcia-Ladona FJ, Huss Y, Frey P et al (1997) Oligodendrocytes express different isoforms of β-amyloid precursor protein in chemically defined cell culture conditions: in situ hybridization and immunocytochemical detection. J Neurosci Res 50:50–61

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Mizuguchi M, Ikeda K, Kim SU (1992) Beta-amyloid precursor protein of Alzheimer’s disease in cultured bovine oligodendrocytes. J Neurosci Res 32:34–42

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Mizuguchi M, Ikeda K, Kim SU (1992) Differential distribution of cellular forms of β-amyloid precursor protein in murine glial cell cultures. Brain Res 584:219–225

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Palacios G, Palacios JM, Mengod G et al (1992) β-Amyloid precursor protein localization in the Golgi apparatus in neurons and oligodendrocytes. An immunocytochemical structural and ultrastructural study in normal and axotomized neurons. Mol Brain Res 15:195–206

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Solà C, García-Ladona FJ, Mengod G et al (1993) Increased levels of the Kunitz protease inhibitor-containing βAPP mRNAs in rat brain following neurotoxic damage. Mol Brain Res 17:41–52

    Article  PubMed  Google Scholar 

  26. 26.

    Solà C, García-Ladona FJ, Sarasa M et al (1993) βAPP gene expression is increased in the rat brain after motor neuron axotomy. Eur J Neurosci 5:795–808

    Article  PubMed  Google Scholar 

  27. 27.

    Guiroy DC, Bogucki A, Papierz W et al (1991) Amyloid β-protein in cerebral amyloid angiopathy, senile plaques, and preamyloidotic lesions in subcortical arteriosclerotic encephalopathy (Binswanger disease). Neurosci Lett 124:31–34

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Brun A, Englund E (1986) A white matter disorder in dementia of the Alzheimer Type: a pathoanatomical study. Ann Neurol 19:253–262

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Chia LS, Thompson JE, Moscarello MA (1984) X-ray diffraction evidence for myelin disorder in brain from humans with Alzheimer’s disease. Biochim Biophys Acta 775:308–312

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    London E, de Leon MJ, George AE et al (1986) Periventricular lucencies in the CT scans of aged and demented patients. Biol Psychiatry 21:960–962

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Hussain I, Hawkins J, Harrison D et al (2007) Oral administration of a potent and selective non-peptidic BACE-1 inhibitor decreases β-cleavage of amyloid precursor protein and amyloid-β production in vivo. J Neurochem 100:802–809

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Barten DM, Guss VL, Corsa JA et al (2005) Dynamics of β-amyloid reductions in brain, cerebrospinal fluid, and plasma of β-amyloid precursor protein transgenic mice treated with a γ-secretase inhibitor. J Pharmacol Exp Ther 312:635–643

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Rosin C, Bates TE, Skaper SD (2004) Excitatory amino acid induced oligodendrocyte cell death in vitro: receptor-dependent and -independent mechanisms. J Neurochem 90:1173–1185

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Skaper SD, Facci L, Milani D (1990) Culture and use of primary and clonal neural cells. In: Conn PM et al (eds) Methods in neurosciences, vol 2. Academic Press, San Diego, pp 17–33

    Google Scholar 

  35. 35.

    Prinjha R, Moore SE, Vinson M et al (2000) Inhibitor of neurite outgrowth in humans. Nature 403:383–384

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Back SA, Gan X, Li Y et al (1998) Maturation-dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion. J Neurosci 18:6241–6253

    CAS  PubMed  Google Scholar 

  37. 37.

    Huber AB, Weinmann O, Brösamle C et al (2002) Patterns of Nogo mRNA and protein expression in the developing and adult rat and after CNS lesions. J Neurosci 22:3553–3567

    CAS  PubMed  Google Scholar 

  38. 38.

    Taketomi M, Kinoshita N, Kimura K et al (2002) Nogo-A expression in mature oligodendrocytes of rat spinal cord in association with specific molecules. Neurosci Lett 332:37–40

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Hussain I, Powell D, Howlett DR et al (1999) Identification of a novel aspartic protease (Asp2) as β-secretase. Mol Cell Neurosci 14:419–427

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Vassar R, Bennett BD, Babu-Khan S et al (1999) β-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Gegelashvili G, Schousboe A, Linnemann D (1994) Expression of amyloid precursor protein (APP) in rat brain and cultured neural cells. Int J Dev Neurosci 12:703–708

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Golde TE, Estus S, Usiak M et al (1990) Expression of β amyloid protein precursor mRNAs: recognition of a novel alternatively spliced form and quantitation in Alzheimer’s disease using PCR. Neuron 4:253–267

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Oltersdorf T, Fritz LC, Schenk DB et al (1989) The secreted form of Alzheimer’s amyloid precursor protein with the Kunitz domain is protease nexin-II. Nature 341:144–147

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Weidemann A, König G, Bunke D et al (1989) Identification, biogenesis, and localization of precursors of Alzheimer’s disease A4 amyloid protein. Cell 57:115–126

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Kitaguchi N, Takahashi Y, Tokushima Y et al (1988) Novel precursor of Alzheimer’s disease amyloid protein shows protease inhibitory activity. Nature 331:530–532

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Ponte P, Gonzalez-DeWhitt P, Schilling J et al (1988) A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors. Nature 331:525–527

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Lacor PN, Buniel MC, Furlow PW et al (2007) Aβ oligomer-induced aberrations in synapse composition, shape and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27:796–807

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Tanzi RE, Bertram L (2005) Twenty years of Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 120:545–555

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Lefranc-Jullien S, Lisowski V, Hernandez JF et al (2005) Design and characterization of a new cell-permeant inhibitor of the β-secretase BACE1. Br J Pharmacol 145:228–235

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Asai M, Hattori C, Iwata N et al (2006) The novel β-secretase inhibitor KMI-429 reduces amyloid β peptide production in amyloid precursor protein transgenic and wild-type mice. J Neurochem 96:533–540

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Ghosh AK, Kumaragurubaran N, Hong L et al (2007) Design, synthesis, and X-ray structure of potent memapsin 2 (β-secretase) inhibitors with isophthalamide derivatives as the P2–P3-ligands. J Med Chem 50:2399–2407

    Article  CAS  PubMed  Google Scholar 

  52. 52.

    Nishitomi K, Sakaguchi G, Horikoshi Y et al (2006) BACE1 inhibition reduces endogenous A beta and alters APP processing in wild-type mice. J Neurochem 99:1555–1563

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Waxman SG (1977) Conduction in myelinated, unmyelinated, and demyelinated fibers. Arch Neurol 34:585–589

    CAS  PubMed  Google Scholar 

  54. 54.

    Bartzokis G, Beckson M, Lu PH et al (2001) Age-related changes in frontal and temporal lobe volumes in men. Arch Gen Psychiatry 58:461–465

    Article  CAS  PubMed  Google Scholar 

  55. 55.

    Fuster JM (1997) Network memory. Trends Neurosci 20:451–459

    Article  CAS  PubMed  Google Scholar 

  56. 56.

    Mesulam MM (1999) Neuroplasticity failure in Alzheimer’s disease: bridging the gap between plaques and tangles. Neuron 24:521–529

    Article  CAS  PubMed  Google Scholar 

  57. 57.

    Felts PA, Baker TA, Smith KJ (1997) Conduction in segmentally demyelinated mammalian central axons. J Neurosci 17:7267–7277

    CAS  PubMed  Google Scholar 

  58. 58.

    O’Sullivan M, Jones DK, Summers PE et al (2001) Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline. Neurology 57:632–638

    PubMed  Google Scholar 

  59. 59.

    Braak H, Del Tredici K, Schultz C et al (2000) Vulnerability of select neuronal types to Alzheimer’s disease. Ann NY Acad Sci 924:53–61

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Pakkenberg B, Pelvig D, Marner L et al (2003) Aging and the human neocortex. Exp Gerontol 38:95–99

    Article  PubMed  Google Scholar 

  61. 61.

    Hu X, Hicks CW, He W et al (2006) Bace1 modulates myelination in the central and peripheral nervous system. Nat Neurosci 9:1520–1525

    Article  CAS  PubMed  Google Scholar 

  62. 62.

    Hu X, He W, Diaconu C et al (2008) Genetic deletion of BACE1 in mice affects remyelination of sciatic nerves. FASEB J 22:2970–2980

    Article  CAS  PubMed  Google Scholar 

  63. 63.

    Bresnahan JC (1978) An electron-microscopic analysis of axonal alterations following blunt contusion of the spinal cord of the rhesus monkey (Macaca mulatta). J Neurol Sci 37:59–82

    Article  CAS  PubMed  Google Scholar 

  64. 64.

    Miller AK, Alston RL, Corsellis JA (1980) Variation with age in the volumes of grey and white matter in the cerebral hemispheres of man: measurements with an image analyzer. Neuropathol Appl Neurobiol 6:119–132

    Article  CAS  PubMed  Google Scholar 

  65. 65.

    Hinman JD, Abraham CR (2007) What’s behind the decline? The role of white matter in brain aging. Neurochem Res 32:2023–2031

    Article  CAS  PubMed  Google Scholar 

  66. 66.

    Bartzokis G (2004) Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiol Aging 25:5–18

    Article  CAS  PubMed  Google Scholar 

  67. 67.

    Bartzokis G, Beckson M, Lu PH et al (2000) Age-related brain volume reductions in amphetamine and cocaine addicts and normal controls: implications for addiction research. Psychiatry Res 98:93–102

    Article  CAS  PubMed  Google Scholar 

  68. 68.

    Roth AD, Ramírez G, Alarcón R et al (2005) Oligodendrocytes damage in Alzheimer’s disease: beta amyloid toxicity and inflammation. Biol Res 38:381–387

    Article  CAS  PubMed  Google Scholar 

  69. 69.

    Xu J, Chen S, Ahmed SH et al (2001) Amyloid-β peptides are cytotoxic to oligodendrocytes. J Neurosci 21:RC118

    CAS  PubMed  Google Scholar 

  70. 70.

    Lee JT, Xu J, Lee JM et al (2004) Amyloid-β peptide induces oligodendrocyte death by activating the neutral sphingomyelinase-ceramide pathway. J Cell Biol 164:123–131

    Article  CAS  PubMed  Google Scholar 

  71. 71.

    Chen S, Lee JM, Zeng C et al (2006) Amyloid beta peptide increases DP5 expression via activation of neutral sphingomyelinase and JNK in oligodendrocytes. J Neurochem 97:631–640

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. Martyn Evans for help with the confocal microscopy. Claudia Rosin was supported by Biotechnology and Biological Sciences Research Council Industrial Partnership CASE studentship 01/A4/C/07710.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Skaper.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Skaper, S.D., Evans, N.A., Soden, P.E. et al. Oligodendrocytes are a Novel Source of Amyloid Peptide Generation. Neurochem Res 34, 2243–2250 (2009). https://doi.org/10.1007/s11064-009-0022-9

Download citation

Keywords

  • Oligodendrocytes
  • Amyloid peptides
  • Secretases
  • Cortex
  • Alzheimer’s disease
  • Neurodegeneration