Water and solute secretion by the choroid plexus

Abstract

The cerebrospinal fluid (CSF) provides mechanical and chemical protection of the brain and spinal cord. This review focusses on the contribution of the choroid plexus epithelium to the water and salt homeostasis of the CSF, i.e. the secretory processes involved in CSF formation. The choroid plexus epithelium is situated in the ventricular system and is believed to be the major site of CSF production. Numerous studies have identified transport processes involved in this secretion, and recently, the underlying molecular background for some of the mechanisms have emerged. The nascent CSF consists mainly of NaCl and NaHCO3, and the production rate is strictly coupled to the rate of Na+ secretion. In contrast to other secreting epithelia, Na+ is actively pumped across the luminal surface by the Na+,K+-ATPase with possible contributions by other Na+ transporters, e.g. the luminal Na+,K+,2Cl cotransporter. The Cl and HCO3 ions are likely transported by a luminal cAMP activated inward rectified anion conductance, although the responsible proteins have not been identified. Whereas Cl most likely enters the cells through anion exchange, the functional as well as the molecular basis for the basolateral Na+ entry are not yet well-defined. Water molecules follow across the epithelium mainly through the water channel, AQP1, driven by the created ionic gradient. In this article, the implications of the recent findings for the current model of CSF secretion are discussed. Finally, the clinical implications and the prospects of future advances in understanding CSF production are briefly outlined.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Alper SL, Stuart-Tilley A, Simmons CF, Brown D, Drenckhahn D (1994) The fodrin-ankyrin cytoskeleton of choroid plexus preferentially colocalizes with apical Na+K(+)-ATPase rather than with basolateral anion exchanger AE2. J Clin Invest 93:1430–1438

    PubMed  CAS  Google Scholar 

  2. 2.

    Alper SL, Stuart-Tilley AK, Biemesderfer D, Shmukler BE, Brown D (1997) Immunolocalization of AE2 anion exchanger in rat kidney. Am J Physiol 273:F601–F614

    PubMed  CAS  Google Scholar 

  3. 3.

    Ames A III, Higashi K, Nesbett FB (1965) Relation of potassium concentration in choroid plexus fluid to that in plasma. J Physiol 181:506–515

    PubMed  CAS  Google Scholar 

  4. 4.

    Ames A III, Higashi K, Nesbett FB (1965) Effects of Pco2 acetazolamide and ouabain on volume and composition of choroid-plexus fluid. J Physiol 181:516–524

    PubMed  Google Scholar 

  5. 5.

    Ames A III, Sakanoue M, Endo S (1964) Na, K, Ca, Mg, and Cl concentrations in choroid plexus fluid and cisternal fluid compared with plasma ultrafiltrate. J Neurophysiol 27:672–681

    PubMed  Google Scholar 

  6. 6.

    Amin MS, Wang HW, Reza E, Whitman SC, Tuana BS, Leenen FH (2005) Distribution of epithelial sodium channels and mineralocorticoid receptors in cardiovascular regulatory centers in rat brain. Am J Physiol Regul Integr Comp Physiol 289:R1787–R1797

    PubMed  CAS  Google Scholar 

  7. 7.

    Bairamian D, Johanson CE, Parmelee JT, Epstein MH (1991) Potassium cotransport with sodium and chloride in the choroid plexus. J Neurochem 56:1623–1629

    PubMed  CAS  Google Scholar 

  8. 8.

    Battle T, Preisser L, Marteau V, Meduri G, Lambert M, Nitschke R, Brown PD, Corman B (2000) Vasopressin V1a receptor signaling in a rat choroid plexus cell line. Biochem Biophys Res Commun 275:322–327

    PubMed  CAS  Google Scholar 

  9. 9.

    Bouzinova EV, Praetorius J, Virkki LV, Nielsen S, Boron WF, Aalkjaer C (2005) Na+-dependent HCO3 uptake into the rat choroid plexus epithelium is partially DIDS sensitive. Am J Physiol Cell Physiol 289:C1448–C1456

    PubMed  CAS  Google Scholar 

  10. 10.

    Brown PD, Davies SL, Speake T, Millar ID (2004) Molecular mechanisms of cerebrospinal fluid production. Neuroscience 129:957–970

    PubMed  CAS  Google Scholar 

  11. 11.

    Brown PD, Pakhomova A, Millar ID (2006) NKCC1 does not contribute to volume regulation in epithelial cells isolated from mouse choroid plexus. Proc Physiol Soc 2:PC15 (Abstract)

    Google Scholar 

  12. 12.

    Burg MB, Orloff J (1968) Control of fluid absorption in the renal proximal tubule. J Clin Invest 47:2016–2024

    PubMed  CAS  Google Scholar 

  13. 13.

    Chodobski A, Loh YP, Corsetti S, Szmydynger-Chodobska J, Johanson CE, Lim YP, Monfils PR (1997) The presence of arginine vasopressin and its mRNA in rat choroid plexus epithelium. Brain Res Mol Brain Res 48:67–72

    PubMed  CAS  Google Scholar 

  14. 14.

    Chodobski A, Summy-Long J, Lin MWS, Wojcik BE, Bui V, Kil E, Johanson CE (2000) Regulation of choroidal vasopressin secretion by the cAMP/PKA signalling patheway and the possible autocrine actions. Soc Neurosci Abstr 26:337 (Abstract)

    Google Scholar 

  15. 15.

    Chodobski A, Szmydynger-Chodobska J (2001) Choroid plexus: target for polypeptides and site of their synthesis. Microsc Res Tech 52:65–82

    PubMed  CAS  Google Scholar 

  16. 16.

    Chodobski A, Szmydynger-Chodobska J, Johanson CE (1998) Vasopressin mediates the inhibitory effect of central angiotensin II on cerebrospinal fluid formation. Eur J Pharmacol 347:205–209

    PubMed  CAS  Google Scholar 

  17. 17.

    Chodobski A, Szmydynger-Chodobska J, Vannorsdall MD, Epstein MH, Johanson CE (1994) AT1 receptor subtype mediates the inhibitory effect of central angiotensin II on cerebrospinal fluid formation in the rat. Regul Pept 53:123–129

    PubMed  CAS  Google Scholar 

  18. 18.

    Chodobski A, Wojcik BE, Loh YP, Dodd KA, Szmydynger-Chodobska J, Johanson CE, Demers DM, Chun ZG, Limthong NP (1998) Vasopressin gene expression in rat choroid plexus. Adv Exp Med Biol 449:59–65

    PubMed  CAS  Google Scholar 

  19. 19.

    Christensen O, Zeuthen T (1987) Maxi K+ channels in leaky epithelia are regulated by intracellular Ca2+, pH and membrane potential. Pflugers Arch 408:249–259

    PubMed  CAS  Google Scholar 

  20. 20.

    Cornford EM, Varesi JB, Hyman S, Daiman RT, Raleigh MJ (1997) Mitochondrial content of choroid plexus epithelium. Exp Brain Res 399–405

  21. 21.

    Crook RB, Farber MB, Prusiner SB (1984) Hormones and neurotransmitters control cyclic AMP metabolism in choroid plexus epithelial cells. J Neurochem 42:340–350

    PubMed  CAS  Google Scholar 

  22. 22.

    Csaky TZ, Rigor BM (1967) The choroid plexus as a glucose barrier. In: Lajtha A, Ford DH (eds) Progress in brain research. Elsevier, Amsterdam, pp 147–158

    Google Scholar 

  23. 23.

    Cserr HF (1971) Physiology of the choroid plexus. Physiol Rev 51:273–311

    PubMed  CAS  Google Scholar 

  24. 24.

    Cushing H (1914) Studies on the cerebrospinal fluid. J Med Res 26:1–19

    Google Scholar 

  25. 25.

    Davson H, Segal MB (1996) Physiology of the CSF and blood–brain barriers. CRC Press, Boca Raton

    Google Scholar 

  26. 26.

    Davson H, Kleeman CR, Levin E (1962) Quantitative studies of the passage of different substances out of the cerebrospinal fluid. J Physiol 161:126–142

    PubMed  CAS  Google Scholar 

  27. 27.

    Davson H, Purvis C (1954) Cryoscopic apparatus suitable for studies on aqueous humour and cerebro-spinal fluid. J Physiol 124:12P–13P

    PubMed  CAS  Google Scholar 

  28. 28.

    Davson H, Segal MB (1970) The effects of some inhibitors and accelerators of sodium transport on the turnover of 22Na in the cerebrospinal fluid and the brain. J Physiol 209:131–153

    PubMed  CAS  Google Scholar 

  29. 29.

    Deng QS, Johanson CE (1989) Stilbenes inhibit exchange of chloride between blood, choroid plexus and cerebrospinal fluid. Brain Res 501:183–187

    PubMed  CAS  Google Scholar 

  30. 30.

    Deng QS, Johanson CE (1992) Cyclic AMP alteration of chloride transport into the choroid plexus–cerebrospinal fluid system. Neurosci Lett 143:146–150

    PubMed  CAS  Google Scholar 

  31. 31.

    Doring F, Derst C, Wischmeyer E, Karschin C, Schneggenburger R, Daut J, Karschin A (1998) The epithelial inward rectifier channel Kir7.1 displays unusual K+ permeation properties. J Neurosci 18:8625–8636

    PubMed  CAS  Google Scholar 

  32. 32.

    Emerich DF, Skinner SJ, Borlongan CV, Vasconcellos AV, Thanos CG (2005) The choroid plexus in the rise, fall and repair of the brain. Bioessays 27:262–274

    PubMed  CAS  Google Scholar 

  33. 33.

    Faivre J (1854) Structure du conarium et des plexus choroïde chez l’hommes et des animaux. Gaz Med Paris 9:555–556

    Google Scholar 

  34. 34.

    Faraci FM, Mayhan WG, Heistad DD (1990) Effect of vasopressin on production of cerebrospinal fluid: possible role of vasopressin (V1)-receptors. Am J Physiol 258:R94–R98

    PubMed  CAS  Google Scholar 

  35. 35.

    Fencl V, Vale JR, Broch JA (1969) Respiration and cerebral blood flow in metabolic acidosis and alkalosis in humans. J Appl Physiol 27:67–76

    PubMed  CAS  Google Scholar 

  36. 36.

    Fenton RA, Flynn A, Shodeinde A, Smith CP, Schnermann J, Knepper MA (2005) Renal phenotype of UT-A urea transporter knockout mice. J Am Soc Nephrol 16:1583–1592

    PubMed  CAS  Google Scholar 

  37. 37.

    Feschenko MS, Donnet C, Wetzel RK, Asinovski NK, Jones LR, Sweadner KJ (2003) Phospholemman, a single-span membrane protein, is an accessory protein of Na,K-ATPase in cerebellum and choroid plexus. J Neurosci 23:2161–2169

    PubMed  CAS  Google Scholar 

  38. 38.

    Halmi P, Parkkila S, Honkaniemi J (2006) Expression of carbonic anhydrases II, IV, VII, VIII and XII in rat brain after kainic acid induced status epilepticus. Neurochem Int 48:24–30

    PubMed  CAS  Google Scholar 

  39. 39.

    Haselbach M, Wegener J, Decker S, Engelbertz C, Galla HJ (2001) Porcine choroid plexus epithelial cells in culture: regulation of barrier properties and transport processes. Microsc Res Tech 52:137–152

    PubMed  CAS  Google Scholar 

  40. 40.

    Heisey SR, Held D, Pappenheimer JR (1962) Bulk flow and diffusion in the cerebrospinal fluid system of the goat. Am J Physiol 203:775–781

    PubMed  CAS  Google Scholar 

  41. 41.

    Held D, Fencl V, Pappenheimer JR (1964) Electrical potential of cerebrospinal fluid. J Neurophysiol 27:942–959

    PubMed  CAS  Google Scholar 

  42. 42.

    Javaheri S, Wagner KR (1993) Bumetanide decreases canine cerebrospinal fluid production. In vivo evidence for NaCl cotransport in the central nervous system. J Clin Invest 92:2257–2261

    PubMed  CAS  Google Scholar 

  43. 43.

    Johanson C, McMillan P, Tavares R, Spangenberger A, Duncan J, Silverberg G, Stopa E (2004) Homeostatic capabilities of the choroid plexus epithelium in Alzheimer’s disease. Cerebrospinal Fluid Res 1:1–16

    Google Scholar 

  44. 44.

    Johanson CE, Murphy VA (1990) Acetazolamide and insulin alter choroid plexus epithelial cell [Na+], pH, and volume. Am J Physiol 258:F1538–F1546

    PubMed  CAS  Google Scholar 

  45. 45.

    Johanson CE, Preston JE, Chodobski A, Stopa EG, Szmydynger-Chodobska J, McMillan PN (1999) AVP V1 receptor-mediated decrease in Cl efflux and increase in dark cell number in choroid plexus epithelium. Am J Physiol 276:C82–C90

    PubMed  CAS  Google Scholar 

  46. 46.

    Johnston M, Zakharov A, Papaiconomou C, Salmasi G, Armstrong D (2004) Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Research 1:2 DOI 10.1186/1743-8454-1-2

    PubMed  Google Scholar 

  47. 47.

    Kajita H, Brown PD (1997) Inhibition of the inward-rectifying Cl channel in rat choroid plexus by a decrease in extracellular pH. J Physiol 498 (Pt 3):703–707

    PubMed  CAS  Google Scholar 

  48. 48.

    Kalaria RN, Premkumar DR, Lin CW, Kroon SN, Bae JY, Sayre LM, LaManna JC (1998) Identification and expression of the Na+/H+ exchanger in mammalian cerebrovascular and choroidal tissues: characterization by amiloride-sensitive [3H]MIA binding and RT-PCR analysis. Brain Res Mol Brain Res 58:178–187

    PubMed  CAS  Google Scholar 

  49. 49.

    Kallio H, Pastorekova S, Pastorek J, Waheed A, Sly WS, Mannisto S, Heikinheimo M, Parkkila S (2006) Expression of carbonic anhydrases IX and XII during mouse embryonic development. BMC Dev Biol 6:22 (Epub ahead of print)

    PubMed  Google Scholar 

  50. 50.

    Kanaka C, Ohno K, Okabe A, Kuriyama K, Itoh T, Fukuda A, Sato K (2001) The differential expression patterns of messenger RNAs encoding K–Cl cotransporters (KCC1,2) and Na–K–2Cl cotransporter (NKCC1) in the rat nervous system. Neuroscience 104:933–946

    PubMed  CAS  Google Scholar 

  51. 51.

    Kazemi H, Johnson DC (1986) Regulation of cerebrospinal fluid acid–base balance. Physiol Rev 66:953–1037

    PubMed  CAS  Google Scholar 

  52. 52.

    Keep RF, Jones HC (1990) A morphometric study on the development of the lateral ventricle choroid plexus, choroid plexus capillaries and ventricular ependyma in the rat. Brain Res Dev Brain Res 56:47–53

    PubMed  CAS  Google Scholar 

  53. 53.

    Keep RF, Xiang J, Betz AL (1994) Potassium cotransport at the rat choroid plexus. Am J Physiol 267:C1616–C1622

    PubMed  CAS  Google Scholar 

  54. 54.

    Kibble JD, Garner C, Colledge WH, Brown S, Kajita H, Evans M, Brown PD (1997) Whole cell Cl conductances in mouse choroid plexus epithelial cells do not require CFTR expression. Am J Physiol 272:C1899–C1907

    PubMed  CAS  Google Scholar 

  55. 55.

    Kibble JD, Trezise AE, Brown PD (1996) Properties of the cAMP-activated C1—current in choroid plexus epithelial cells isolated from the rat. J Physiol 496 (Pt 1):69–80

    PubMed  CAS  Google Scholar 

  56. 56.

    Kotera T, Brown PD (1994) Evidence for two types of potassium current in rat choroid plexus epithelial cells. Pflugers Arch 427:317–324

    PubMed  CAS  Google Scholar 

  57. 57.

    Li H, Tornberg J, Kaila K, Airaksinen MS, Rivera C (2002) Patterns of cation-chloride cotransporter expression during embryonic rodent CNS development. Eur J Neurosci 16:2358–2370

    PubMed  Google Scholar 

  58. 58.

    Lindsey AE, Schneider K, Simmons DM, Baron R, Lee BS, Kopito RR (1990) Functional expression and subcellular localization of an anion exchanger cloned from choroid plexus. Proc Natl Acad Sci USA 87:5278–5282

    PubMed  CAS  Google Scholar 

  59. 59.

    Livingston RB (1949) Cerebrospinal fluid. In: Fulton JF (ed) A textbook of physiology. Saunders, Philadelphia, pp 916–980

    Google Scholar 

  60. 60.

    Marrs JA, Napolitano EW, Murphy-Erdosh C, Mays RW, Reichardt LF, Nelson WJ (1993) Distinguishing roles of the membrane-cytoskeleton and cadherin mediated cell–cell adhesion in generating different Na+,K(+)-ATPase distributions in polarized epithelia. J Cell Biol 123:149–164

    PubMed  CAS  Google Scholar 

  61. 61.

    Masuzawa T, Ohta T, Kawamura M, Nakahara N, Sato F (1984) Immunohistochemical localization of Na+, K+-ATPase in the choroid plexus. Brain Res 302:357–362

    PubMed  CAS  Google Scholar 

  62. 62.

    Maurizi CP (2003) The puzzle of where cerebrospinal fluid is absorbed: new pieces. Med Hypotheses 60:102–103

    PubMed  CAS  Google Scholar 

  63. 63.

    Mayer SE, Sanders-Bush E (1993) Sodium-dependent antiporters in choroid plexus epithelial cultures from rabbit. J Neurochem 60:1308–1316

    PubMed  CAS  Google Scholar 

  64. 64.

    Melby JM, Miner LC, Reed DJ (1982) Effect of acetazolamide and furosemide on the production and composition of cerebrospinal fluid from the cat choroid plexus. Can J Physiol Pharm 60:405–409

    CAS  Google Scholar 

  65. 65.

    Moon Y, Hong SJ, Shin D, Jung Y (2006) Increased aquaporin-1 expression in choroid plexus epithelium after systemic hyponatremia. Neurosci Lett 395:1–6

    PubMed  CAS  Google Scholar 

  66. 66.

    Morales-Mulia M, Pasantes-Morales H, Moran J (2000) Volume sensitive efflux of taurine in HEK293 cells overexpressing phospholemman. Biochim Biophys Acta 1496:252–260

    PubMed  CAS  Google Scholar 

  67. 67.

    Murphy VA, Johanson CE (1989) Alteration of sodium transport by the choroid plexus with amiloride. Biochim Biophys Acta 979:187–192

    PubMed  CAS  Google Scholar 

  68. 68.

    Murphy VA, Johanson CE (1989) Acidosis, acetazolamide, and amiloride: effects on 22Na transfer across the blood-brain and blood–CSF barriers. J Neurochem 52:1058–1063

    PubMed  CAS  Google Scholar 

  69. 69.

    Murphy VA, Johanson CE (1990) Na(+)-H+ exchange in choroid plexus and CSF in acute metabolic acidosis or alkalosis. Am J Physiol 258:F1528–F1537

    PubMed  CAS  Google Scholar 

  70. 70.

    Nakamura N, Suzuki Y, Sakuta H, Ookata K, Kawahara K, Hirose S (1999) Inwardly rectifying K+ channel Kir7.1 is highly expressed in thyroid follicular cells, intestinal epithelial cells and choroid plexus epithelial cells: implication for a functional coupling with Na+,K+-ATPase. Biochem J 342 (Pt 2):329–336

    PubMed  CAS  Google Scholar 

  71. 71.

    Netter FM (2003) Atlas der Anatomie des Menschen. 3rd ed. Thieme, Stuttgart

  72. 72.

    Nielsen S, Smith BL, Christensen EI, Agre P (1993) Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci USA 90:7275–7279

    PubMed  CAS  Google Scholar 

  73. 73.

    Nilsson C, Ekman R, Lindvall-Axelsson M, Owman C (1990) Distribution of peptidergic nerves in the choroid plexus, focusing on coexistence of neuropeptide Y, vasoactive intestinal polypeptide and peptide histidine isoleucine. Regul Pept 27:11–26

    PubMed  CAS  Google Scholar 

  74. 74.

    Oshio K, Song Y, Verkman AS, Manley GT (2003) Aquaporin-1 deletion reduces osmotic water permeability and cerebrospinal fluid production. Acta Neurochir Suppl 86:525–528

    PubMed  CAS  Google Scholar 

  75. 75.

    Oshio K, Watanabe H, Song Y, Verkman AS, Manley GT (2005) Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J 19:76–78

    PubMed  CAS  Google Scholar 

  76. 76.

    Palmer CJ, Scott BT, Jones LR (1991) Purification and complete sequence determination of the major plasma membrane substrate for cAMP-dependent protein kinase and protein kinase C in myocardium. J Biol Chem 266:11126–11130

    PubMed  CAS  Google Scholar 

  77. 77.

    Patlak CS, Adamson RH, Oppelt WW, Rall DP (1966) Potential difference of the ventricular fluid in vivo and in vitro in the dogfish. Life Sci 5:2011–2015

    Google Scholar 

  78. 78.

    Pearson MM, Lu J, Mount DB, Delpire E (2001) Localization of the K(+)-Cl(−) cotransporter, KCC3, in the central and peripheral nervous systems: expression in the choroid plexus, large neurons and white matter tracts. Neuroscience 103:481–491

    PubMed  CAS  Google Scholar 

  79. 79.

    Peters A, Palay SL, Webster HDF (1976) The fine structure of the nervous system. Saunders, Philadelphia

    Google Scholar 

  80. 80.

    Phillips PA, Abrahams JM, Kelly J, Paxinos G, Grzonka Z, Mendelsohn FA, Johnston CI (1988) Localization of vasopressin binding sites in rat brain by in vitro autoradiography using a radioiodinated V1 receptor antagonist. Neuroscience 27:749–761

    PubMed  CAS  Google Scholar 

  81. 81.

    Plotkin MD, Kaplan MR, Peterson LN, Gullans SR, Hebert SC, Delpire E (1997) Expression of the Na(+)-K(+)-2Cl- cotransporter BSC2 in the nervous system. Am J Physiol 272:C173–C183

    PubMed  CAS  Google Scholar 

  82. 82.

    Pollay M, Curl F (1967) Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am J Physiol 213:1031–1038

    PubMed  CAS  Google Scholar 

  83. 83.

    Pollay M, Stevens E, Estrada S, Kaplan R (1972) Extracorporal perfusion of choroid plexus. J Appl Physiol 32:612–617

    PubMed  CAS  Google Scholar 

  84. 84.

    Praetorius J, Bouzinova EV, Boron WF, Aalkjaer C, Nielsen S (2005) Expression of bicarbonate transporters and aquaporins in the choroid plexus. EB/IUPS 922.2 (Abstract)

  85. 85.

    Praetorius J, Nejsum LN, Nielsen S (2004) A SCL4A10 gene product maps selectively to the basolateral plasma membrane of choroid plexus epithelial cells. Am J Physiol Cell Physiol 286:C601–C610

    PubMed  CAS  Google Scholar 

  86. 86.

    Praetorius J, Nielsen S (2006) Distribution of sodium transporters and aquaporin-1 in the human choroid plexus. Am J Physiol Cell Physiol 291:C59–C67

    PubMed  CAS  Google Scholar 

  87. 87.

    Pushkin A, Abuladze N, Newman D, Lee I, Xu G, Kurtz I (2000) Cloning, characterization and chromosomal assignment of NBC4, a new member of the sodium bicarbonate cotransporter family. Biochim Biophys Acta 1493:215–218

    PubMed  CAS  Google Scholar 

  88. 88.

    Redzic ZB, Segal MB (2004) The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv Drug Deliv Rev 56:1695–1716

    PubMed  CAS  Google Scholar 

  89. 89.

    de Rougemont J, Ames A III, Nesbett FB, Hofmann HF (1960) Fluid formed by choroid plexus; a technique for its collection and a comparison of its electrolyte composition with serum and cisternal fluids. J Neurophysiol 23:485–495

    PubMed  Google Scholar 

  90. 90.

    Royer P (1950) Perfusion of the cerebral spaces. Biol Med (Paris) 39:237–269

    CAS  Google Scholar 

  91. 91.

    Sato O, Bering EA (1967) Extra-ventricular formation of cerebrospinal fluid. No To Shinkei 19:883–885

    PubMed  CAS  Google Scholar 

  92. 92.

    Schnermann J, Chou CL, Ma T, Traynor T, Knepper MA, Verkman AS (1998) Defective proximal tubular fluid reabsorption in transgenic aquaporin-1 null mice. Proc Natl Acad Sci USA 95:9660–9664

    PubMed  CAS  Google Scholar 

  93. 93.

    Segal MB (2001) Transport of nutrients across the choroid plexus. Microsc Res Tech 52:38–48

    PubMed  CAS  Google Scholar 

  94. 94.

    Segal MB, Burgess AM (1974) A combined physiological and morphological study of the secretory process in the rabbit choroid plexus. J Cell Sci 14:339–350

    PubMed  CAS  Google Scholar 

  95. 95.

    Serot JM, Bene MC, Faure GC (2003) Choroid plexus, aging of the brain, and Alzheimer’s disease. Front Biosci 8:s515–s521

    PubMed  Google Scholar 

  96. 96.

    Siegel GJ, Holm C, Schreiber JH, Desmond T, Ernst SA (1984) Purification of mouse brain (Na+ + K+)-ATPase catalytic unit, characterization of antiserum, and immunocytochemical localization in cerebellum, choroid plexus, and kidney. J Histochem Cytochem 32:1309–1318

    PubMed  CAS  Google Scholar 

  97. 97.

    Speake T, Freeman LJ, Brown PD (2003) Expression of aquaporin 1 and aquaporin 4 water channels in rat choroid plexus. Biochim Biophys Acta 1609:80–86

    PubMed  CAS  Google Scholar 

  98. 98.

    Speake T, Kajita H, Smith CP, Brown PD (2002) Inward-rectifying anion channels are expressed in the epithelial cells of choroid plexus isolated from ClC-2 ’knock-out’ mice. J Physiol 539:385–390

    PubMed  CAS  Google Scholar 

  99. 99.

    Speake T, Kibble JD, Brown PD (2004) Kv1.1 and Kv1.3 channels contribute to the delayed-rectifying K+ conductance in rat choroid plexus epithelial cells. Am J Physiol Cell Physiol 286:C611–C620

    PubMed  CAS  Google Scholar 

  100. 100.

    Speake T, Whitwell C, Kajita H, Majid A, Brown PD (2001) Mechanisms of CSF secretion by the choroid plexus. Microsc Res Tech 52:49–59

    PubMed  CAS  Google Scholar 

  101. 101.

    Sterling D, Alvarez BV, Casey JR (2002) The extracellular component of a transport metabolon. Extracellular loop 4 of the human AE1 Cl/ HCO3 exchanger binds carbonic anhydrase IV. J Biol Chem 277:25239–25246

    PubMed  CAS  Google Scholar 

  102. 102.

    Sterling D, Reithmeier RA, Casey JR (2001) A transport metabolon. Functional interaction of carbonic anhydrase II and chloride/bicarbonate exchangers. J Biol Chem 276:47886–47894

    PubMed  CAS  Google Scholar 

  103. 103.

    Virkki LV, Wilson DA, Vaughan-Jones RD, Boron WF (2002) Functional characterization of human NBC4 as an electrogenic Na+-HCO cotransporter (NBCe2). Am J Physiol Cell Physiol 282:C1278–C1289

    PubMed  CAS  Google Scholar 

  104. 104.

    Vogh BP, Godman DR, Maren TH (1987) Effect of AlCl3 and other acids on cerebrospinal fluid production: a correction. J Pharmacol Exp Ther 243:35–39

    PubMed  CAS  Google Scholar 

  105. 105.

    Vogh BP, Langham MR Jr. (1981) The effect of furosemide and bumetanide on cerebrospinal fluid formation. Brain Res 221:171–183

    PubMed  CAS  Google Scholar 

  106. 106.

    Wang CZ, Yano H, Nagashima K, Seino S (2000) The Na+-driven Cl/HCO3 exchanger. Cloning, tissue distribution, and functional characterization. J Biol Chem 275:35486–35490

    PubMed  CAS  Google Scholar 

  107. 107.

    Watts AG, Sanchez-Watts G, Emanuel JR, Levenson R (1991) Cell-specific expression of mRNAs encoding Na+,K(+)-ATPase alpha- and beta-subunit isoforms within the rat central nervous system. Proc Natl Acad Sci USA 88:7425–7429

    PubMed  CAS  Google Scholar 

  108. 108.

    Weaver CE, McMillan PN, Duncan JA, Stopa EG, Johanson CE (2003) Hydrocephalus disorders: their biophysical and neuroendocrine impact on the choroid plexus epithelium. Advances in Molecular and Cell Biology 31:269–293

    Article  Google Scholar 

  109. 109.

    Welch K (1963) Secretion of cerebrospinal fluid by choroid plexus of the rabbit. Am J Physiol 205:617–624

    PubMed  CAS  Google Scholar 

  110. 110.

    Welch K, Pollay M (1961) Perfusion of particles through arachnoid villi of the monkey. Am J Physiol 201:651–654

    PubMed  CAS  Google Scholar 

  111. 111.

    Wright EM (1978) Transport processes in the formation of the cerebrospinal fluid. Rev Physiol Biochem Pharmacol 83:3–34

    PubMed  CAS  Google Scholar 

  112. 112.

    Wright EM (1972) Mechanisms of ion transport across the choroid plexus. J Physiol 226:545–571

    PubMed  CAS  Google Scholar 

  113. 113.

    Wu Q, Delpire E, Hebert SC, Strange K (1998) Functional demonstration of Na+-K+-2Cl cotransporter activity in isolated, polarized choroid plexus cells. Am J Physiol 275:C1565–C1572

    PubMed  CAS  Google Scholar 

  114. 114.

    Yang T, Huang YG, Singh I, Schnermann J, Briggs JP (1996) Localization of bumetanide- and thiazide-sensitive Na-K-Cl cotransporters along the rat nephron. Am J Physiol 271:F931–F939

    PubMed  CAS  Google Scholar 

  115. 115.

    Zeuthen T (1994) Cotransport of K+, Cl and H2O by membrane proteins from choroid plexus epithelium of Necturus maculosus. J Physiol 478 (Pt 2):203–219

    PubMed  CAS  Google Scholar 

  116. 116.

    Zeuthen T, Wright EM (1981) Epithelial potassium transport: tracer and electrophysiological studies in choroid plexus. J Membr Biol 60:105–128

    PubMed  CAS  Google Scholar 

  117. 117.

    Zeuthen T, Wright EM (1978) An electrogenic NA+/K+ pump in the choroid plexus. Biochim Biophys Acta 511:517–522

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Helle A. Praetorius and Robert A. Fenton are thanked for fruitful discussions and for valuable input regarding the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeppe Praetorius.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Praetorius, J. Water and solute secretion by the choroid plexus. Pflugers Arch - Eur J Physiol 454, 1–18 (2007). https://doi.org/10.1007/s00424-006-0170-6

Download citation

Keywords

  • Cerebrospinal fluid
  • Epithelial transport
  • Aquaporins
  • Na+,K+-ATPase
  • Na+,K+,2Cl cotransporter
  • Acid/base transport